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Abstract

In this paper, a semi-analytical approach for nonlinear free and forced axisymmetric vibration of a thin circular

functionally graded plate is developed. The plate thickness is constant. Functionally graded material (FGM) properties

vary through the thickness of the plate. For harmonic vibrations, by using assumed-time-mode method and Kantorovich

time averaging technique, the governing equations are solved. Steady-state free and forced vibration analysis is

investigated in detail and corresponding results at uniform ambient temperature are illustrated. Some of these results in

special cases are verified by comparing with those in the literature. The results show that the free vibration frequencies are

dependent on vibration amplitudes, and that the volume fraction index has a significant influence on the nonlinear

response characteristics of the plate.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Thin plate structures are encountered in various modern engineering problems and they are often subjected
to sever dynamic loading. This may result in large vibration amplitudes of these structures. When the
amplitude of vibration is of the same order of the plate thickness, a significant geometrical nonlinearity is
induced and the linear model is not sufficient to predict the behavior of the plate such as jump phenomenon;
so the dynamic analog of the von-Karman equations, as the nonlinear equations of motion for thin plates, are
used widely.

Huang and Sandman [1] and Huang and Al-Khattat [2], investigated the nonlinear free and forced
vibrations of circular and annular plates with various boundary conditions. The von-Karman equations and
the Kantorovich method were used, and numerical results were obtained by solving numerically a two-point
boundary value problem. Haterbouch and Benamar [3,4] presented a more complete study for the effects of
large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic
circular plates.

Layered composite materials, due to their thermal and mechanical merits compared to single composed
materials, have been widely used for a variety of engineering applications. However, owing to the sharp
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of circular plate
c ceramic, non-dimensional radius of the

solid circular plate
E Young’s modulus
F, G non-dimensional shape functions
h plate thickness
m metal
Mr, My bending moments per unit length
n volume fraction index
Nr, Ny membrane forces per unit length
P(r,t) uniformly distributed lateral loading

intensity
qðr�; tÞ non-dimensional lateral loading intensity
Qr shearing force per unit length
r, y, z cylindrical coordinates
t time variable

u, w radial and transverse displacements of
the middle plane, respectively

ur, uz displacements along r and z directions,
respectively

V volume fraction
er, ey normal strains along the r and y direc-

tions
n Poisson’s ratio
r mass density
sr, sy radial and circumferential total stresses
t dimensionless time variable
f non-dimensional stress function
cðr; tÞ stress function
obi non-dimensional linear natural frequency
O linear natural frequency
* star exponent indicates non-dimensional

parameters
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discontinuity in the material properties at interfaces between two different materials, there may exist stress
concentrations which result in sever material failure. To remedy such defects, functionally graded materials
(FGMs) have been proposed. FGMs are spatial composites within which material properties vary
continuously and inhomogeneously. The advantage of using these materials is that they can survive the
high thermal gradient environment while maintaining their structural integrity. Typically, FGMs are made
from mixture of two or more materials that are appropriate to achieve the desired objective. FGMs properties
vary continuously from one interface to the other. Those are achieved by gradually varying volume fraction of
constituent materials. FGMs have different applications especially for aircrafts, space vehicles, automobile,
defense industries, electronics, biomedical sectors and other engineering structures.

Many studies for vibration of functionally graded plates are available in the literature. For dynamic
behavior of FGMs, Praveen and Reddy [5] conducted the nonlinear transient thermoelastic analysis of
functionally graded ceramic-metal plates using finite element method. Yang and Shen [6] deal with the
dynamic response of initially stressed FGM rectangular thin plates subjected to impulsive loads. Effects of
volume fraction index, foundation stiffness, plate aspect ratio, the shape and duration of impulsive load on the
dynamic response of FGM plates were studied in this work. They [7] also considered the vibration
characteristics and transient response of shear-deformable FGM plates made of temperature-dependent
materials in thermal environments. Differential quadrature technique, Galerkin approach, and the modal
superposition method are used to determine the transient response of the plate subjected to lateral dynamic
loads. Huang and Shen [8] discussed the nonlinear vibration and dynamic response of functionally graded
plates in a thermal environment by using improved perturbation technique. The results reveal that the
temperature field and volume fraction distribution have significant effect on the nonlinear vibration and
dynamic response of the simply supported rectangular plate with no in-plane displacements. Reddy and Cheng
[9] studied the harmonic vibration problem of functionally graded plates by means of a three-dimensional
asymptotic theory formulated in terms of transfer matrix. Woo and Meguid [10] investigated the nonlinear
analysis of functionally graded plates and shallow shells. An analytical solution has been provided for the
coupled large deflection of plates and shallow shells under mechanical load and temperature field, and
the solution has been obtained in terms of Fourier series. Woo et al. [11] derived an analytical solution for the
nonlinear free vibration behavior of thin rectangular functionally graded plates. Kitipornchai et al. [12]
presented a semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric
imperfections and showed that the vibration frequencies are very much dependent on the vibration amplitude
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and the imperfection mode. They [13] also studied the random vibration of the functionally graded laminates
with third-order shear deformation plate theory and general boundary conditions in thermal environments.
Yang et al. [14] presented a large amplitude vibration analysis of pre-stressed FGM laminated plates that
are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric
actuator layers.

In this paper, the problem of large amplitude axisymmetric vibration of a thin circular functionally graded
plate is formulated in terms of von-Karman’s dynamic equations. FGM properties vary through the constant
thickness of the plate. For harmonic vibrations, the time variable is eliminated by employing the Kantorovich
averaging method. Therefore the basic governing equations for the problem are reduced to a pair of
ordinary differential equations, which form a nonlinear boundary value problem. A numerical study of these
governing equations at uniform ambient temperature is accomplished by shooting and Runge–Kutta
integration methods.

2. Theoretical formulations

Modern light-weight designs often require that thin-plate structures be able to withstand large amplitude of
vibration when they are subjected to dynamic loading conditions. If the amplitude of motion is of the same
order of magnitude as the thickness of the plate, then the mathematical description of the motion must be
extended from classical linear plate theory to include deformation of the middle plane. For proper design, the
influence of this membrane effect upon the strength and responsiveness of the plate should be established. In
the development of a suitable theory, geometric nonlinearities arise in a coupling of membrane and bending
theories for thin plates. There are several theories dealing with plates. For thin plates, von-Karman’s large
deflection theory [15,16] provides a good approximation and is usually applied [4]. Due to the complex nature
of the resulting governing equations, it appears that the only present means of solution to large amplitude
plate vibration problems is by approximate methods of various types.

2.1. FGM properties

Consider a FGM plate of constant thickness h and radius a, which is made from a mixture of ceramic and
metal and the composition varies from the top to the bottom surface, i.e. the top surface ðz ¼ h=2Þ of the plate
is ceramic-rich whereas the bottom surface ðz ¼ �h=2Þ is metal-rich. In such a way, an arbitrary material
property P (e.g., Young’s modulus E, and mass density r) of the functionally graded plate is assumed to vary
through the thickness of the plate, as a function of the volume fraction and properties of the constituent
materials as

P ¼ PtV c þ PbV m, (1)

where Pt and Pb stand for the temperature-dependent properties of the top and bottom surfaces of the plate
and may be expressed as a function of temperature [17] as

P ¼ P0ðP�1T
�1 þ 1þ P1T þ P2T2 þ P3T

3Þ. (2)

In which P0;P�1;P1;P2, and P3 are the coefficients of temperature T (K), and are unique to the constituent
materials. In Table 1, typical values for silicon nitride and stainless steel are listed [18]. Vc and Vm are the
ceramic and metal volume fractions and are related by

Vc þ Vm ¼ 1. (3)

For a plate with an uniform thickness h and a reference surface at its middle surface, the volume fraction Vc

follows a simple power law as

VcðzÞ ¼
2zþ h

2h

� �n

. (4)

Volume fraction index n dictates the material variation profile across the plate thickness. It is assumed that
the effective Young’s modulus E depends on temperature, whereas the mass density r is independent from the
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Table 1

Temperature-dependent coefficients of material properties [18]

Property Material P�1 P0 P1 P2 P3

E (GPa) Si3N4 0 384.43e9 �3.070e�4 2.160e�7 �8.946e�11

SUS304 0 201.04e9 3.079e�4 �6.534e�7 0

r ðkg=m3Þ Si3N4 0 2370 0 0 0

SUS304 0 8166 0 0 0

n Si3N4 – 0.2400 – – –

SUS304 – 0.3177 – – –
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Fig. 1. Variation of the dimensionless Young’s modulus through the dimensionless thickness.

A. Allahverdizadeh et al. / Journal of Sound and Vibration 310 (2008) 966–984 969
temperature. Poisson’s ratio n is considered to be constant. From Eqs. (1)–(4), one has [19,20]

PðzÞ ¼ ðPc � PmÞ
2zþ h

2h

� �n

þ Pm. (5)

In what follows, a metal, stainless steel (SUS304) and ceramics, silicon nitride (Si3N4) system of FGM is
considered. The temperature-dependent material properties are given in Table 1 and are calculated by using
Eq. (5).

Fig. 1 shows the variation of the dimensionless Young’s modulus EðzÞ=Em of the functionally graded plate
through the dimensionless thickness z/h with different values of volume fraction index n. If n ¼ 0 then the
plate reduces to a pure ceramic plate. As the volume fraction index n increases, the ceramic volume fraction
decreases. It is seen that in a same z/h, by increasing n, the dimensionless Young’s modulus decreases. Fig. 2
indicates the variation of the dimensionless mass density rðzÞ=rm with the dimensionless thickness z/h of the
plate for different values of n. We suppose that the mass density is independent of temperature. The non-
dimensional mass density increases from rc=rm at z ¼ h=2 to 1 at z ¼ �h=2. At z closer to z ¼ �h=2, the rate
of decrease of rðzÞ=rm for no1 is high compared to n41. By increasing n with the same z/h, it is observed that
rðzÞ=rm increases.

2.2. Governing equations

Consider a thin circular FGM plate subjected to axisymmetric transverse load and located in its initially un-
deformed configuration by cylindrical coordinates r, y and z. The r-coordinate direction is radially outward
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from the center, the z-coordinate is along the thickness, and the y-coordinate is directed along a circumference
of the plate. The disk has uniform thickness h and it is bounded by the planes z ¼ �h=2 and the cylinder r ¼ a.
The plate is excited in a manner which produces large amplitude vibration. The position of a point inside the
disk is defined by the radial coordinate r and the transverse coordinate z. The radial displacement ur and the
transverse displacement uz show the displacement of the point. These displacements are expressed in terms of
the displacements for a point on the middle surface of the disk using the Kirchhoff plate theory [21]:

urðr; z; tÞ ¼ uðr; tÞ � zwðr; tÞ;r, (6)

uzðr; z; tÞ ¼ wðr; tÞ, (7)

where uðr; tÞ and wðr; tÞ are the radial and transverse displacements of the point on the middle surface of the
plate, respectively.

In the following, governing equations for the ensuing motion are derived. The underlying assumptions are
the followings. Firstly, normals of the middle plane before bending remain straight and normal to the middle
plane after bending. Secondly, slopes produced by flexure are moderately large, but small in comparison with
unity. Thirdly, normal stresses sz are small compared with other stress components and may be neglected
in the stress–strain relations. Finally, the loads and deflections of the plate are symmetrical with respect to the
z-axis.

In accordance with these assumptions, the strains at any level z from the neutral plane are obtained by
substituting the classical plate deformation kinematics relations in the nonlinear strain-displacement relations
as [22–24]

�r ¼ u;r þ
1
2
ðw;rÞ

2
� zw;rr, (8)

�y ¼
u

r
� z

1

r
w;r, (9)

where �r and �y are the normal strains along the r and y directions. In terms of Hooke’s laws, the radial and
circumferential total stresses are given by

sr ¼
Eðz;TÞ

1� n
1

1þ n
ð�r þ n�yÞ

� �
, (10)

sy ¼
Eðz;TÞ

1� n
1

1þ n
ð�y þ n�rÞ

� �
, (11)
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where

Eðz;TÞ ¼ EcmðTÞ
2zþ h

2h

� �n

þ EmðTÞ; Ecm ¼ Ec � Em. (12)

The membrane forces may be

ðNr;NyÞ ¼

Z h=2

�h=2
ðsr; syÞdz, (13)

Nr ¼
h

1� n2
A u;r þ

1

2
ðw;rÞ

2
þ n

u

r

� �
� Bh w;rr þ n

1

r
w;r

� �� �
, (14)

Ny ¼
h

1� n2
A

u

r
þ n u;r þ

1

2
ðw;rÞ

2

� �� �
� Bh

1

r
w;r þ nw;rr

� �� �
, (15)

where A and B are defined as

A ¼ Em þ
Ecm

nþ 1

� �
, (16)

B ¼
nEcm

2ðnþ 1Þðnþ 2Þ
. (17)

And the bending moments become

ðMr;MyÞ ¼

Z h=2

�h=2
ðsr; syÞzdz, (18)

Mr ¼
h3

1� n2
�R w;rr þ n

1

r
w;r

� �
þ

B

h
u;r þ

1

2
ðw;rÞ

2
þ n

u

r

� �� �
, (19)

My ¼
h3

1� n2
�R

1

r
w;r þ nw;rr

� �
þ

B

h

u

r
þ n u;r þ

1

2
ðw;rÞ

2

� �� �� �
, (20)

where

R ¼
Em

12
þ

ðn2 þ nþ 2Þ

4ðnþ 1Þðnþ 2Þðnþ 3Þ
Ecm. (21)

For homogeneous materials, the above relations are identical with Refs. [16,24]. By writing the equilibrium
equation for the forces projected in the radial direction, and neglecting the longitudinal inertia, the result is
[16,24]

Nr;r þ
1

r
ðNr �NyÞ ¼ 0. (22)

Since the principal vibrations take place in the direction perpendicular to the middle plane, it is reasonable
to neglect the longitudinal inertia. By eliminating the radial displacement function uðr; tÞ from Eqs. (14) and
(15), the compatibility equation is obtained with the aid of Eq. (22)

ðNr þNyÞ;r ¼
�hA

2r
ðw;rÞ

2 (23)

when the stress function cðr; tÞ, and the corresponding relations

Nr ¼
c
r
; Ny ¼ c;r (24)
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which satisfy (22) exactly, are introduced into Eq. (23), the result is

c;rr þ
1

r
c;r �

c
r2
¼
�hA

2r
ðw;rÞ

2. (25)

The equation of the moment equilibrium about a circumferential tangent is

Mr;r þ
Mr �My

r
¼ Qr, (26)

where Qr is the shearing force per unit length. By applying d’Alembert’s principle, dynamic equilibrium of the
transverse forces, which act on an annular element, requires that

ðrQrÞ;r þ ðrNrw;rÞ;r þ rPðr; tÞ ¼ h
rcm

nþ 1
þ rm

� �
rw;tt; rcm ¼ rc � rm, (27)

where Pðr; tÞ is the uniformly distributed lateral loading intensity. Combining Eqs. (19), (20), (24), (26) and
(27) one may obtain the equation

�
h3B2

Að1� n2Þ
�

h3R

1� n2

� �
ðr4wÞ �

1

r
ðcw;rÞ;r þ h

rcm

nþ 1
þ rm

� �
w;tt

�
h2B

1� n2
r

hA
ðc;rrrrÞ þ

5� n
hA
ðc;rrrÞ þ

3� 2n
rhA

ðc;rrÞ þ
n

r2hA
ðc;rÞ �

n
r3hA
ðcÞ

� �

�
h2B

1� n2
ðw;rÞðw;rrrÞ þ ðw;rrÞ

2
þ

2� n
r
ðw;rÞðw;rrÞ

� �
¼ Pðr; tÞ, ð28Þ

where

r4w ¼ w;rrrr þ
2

r
w;rrr �

1

r2
w;rr þ

1

r3
w;r. (29)

Eqs. (25) and (28) are dynamic forms of von-Karman’s equations, where the longitudinal and rotary inertias
are neglected. Together, they govern the finite-amplitude axisymmetric vibration of a thin circular plate. By
introducing dimensionless variables as

r� ¼ r=a; h� ¼ h=a; u� ¼ u=a;w� ¼ w=a; r�cm ¼ rcm=rm,

f ¼ c=ða2EmÞ; t ¼ 1=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em=rm

p
t; O� ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=Em

p
O; qðr�; tÞ ¼ Pðr; tÞ=Em ð30Þ

and

A� ¼ A=Em; B� ¼ B=Em; R� ¼ R=Em (31)

the governing equations can now be written in non-dimensional form. In the following equations we
neglect ð Þ�:

f;rr þ
1

r
f;r �

f
r2
¼ �

hA

2r
ðw;rÞ

2, (32)

�
h3B2

Að1� n2Þ
�

h3R

1� n2

� �
ðr4wÞ �

1

r
ðfw;rÞ;r þ h

rcm

nþ 1
þ 1

� �
w;tt

�
h2B

1� n2
r

hA
ðf;rrrrÞ þ

5� n
hA
ðf;rrrÞ þ

3� 2n
rhA

ðf;rrÞ þ
n

r2hA
ðf;rÞ �

n
r3hA
ðfÞ

� �

�
h2B

1� n2
ðw;rÞðw;rrrÞ þ ðw;rrÞ

2
þ

2� n
r
ðw;rÞðw;rrÞ

� �
¼ qðr; tÞ. ð33Þ

These governing differential equations are complicated by the obvious nonlinear coupling of membrane and
bending theories for thin plates.

In order to complete the formulation of the problem, the governing Eqs. (32) and (33) must be accompanied
by a set of boundary conditions at the outer boundary for all dimensionless time t. The boundary conditions
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for wðr; tÞ depend upon the degree of transverse constraint and those for fðr; tÞ depend upon the degree of
radial constraint. For a circular plate with clamped immovable edge, the following conditions are presented.
The boundary conditions at center are as

w;r ¼ 0; u ¼ 0. (34)

By using Eqs. (14) and (15) and also by substituting the dimensionless variables, the non-dimensional radial
displacement function uðr; tÞ may be:

u ¼
ar

hA
f;r �

na

hA
fþ

ahB

A
w;r. (35)

The plate edge is clamped and immovable in r direction, thus requires zero radial displacement; so the
boundary conditions at r ¼ 1 can be expressed as

w ¼ 0; w;r ¼ 0; u ¼ 0. (36)

3. Method of solution

An exact solution of the differential Eqs. (32) and (33), which satisfies boundary conditions of the form
(34)–(36), is at present unknown. The standard Fourier analysis used in linear vibration problems cannot be
applied in an exact sense due to nonlinear character of the differential equations which causes a coupling of
vibration modes. Consequently, the analysis and solution of the problem must be completed in some
approximate manner. In most of the studies carried out on large vibration amplitudes of circular plates, the
common approach has been to use an assumed space or time mode. In the assumed time function method, a
simple harmonic function in time is assumed and is then eliminated from the equation of motion using the
Kantorovich averaging procedure. The resulting nonlinear spatial boundary value problem is solved
numerically. This technique has been used with von-Karman equations in Refs. [1,2,25–28]. Shooting method
or trial and error method [29,30] was employed to get a numerical solution of the nonlinear two point
boundary-value problem.

3.1. Kantorovich averaging method

The first simplification is imposed by taking the time varying loading intensity to be the form,

qðr; tÞ ¼ QðrÞ sin Ot (37)

with the plate being subjected to an uniformly distributed sinusoidal loading, it is assumed that the steady-
state response can be closely approximated by the expressions

wðr; tÞ ¼ GðrÞ sin Ot, (38)

fðr; tÞ ¼ F ðrÞðsin OtÞ2, (39)

where F(r) and G(r) are undetermined shape functions of vibration. The assumption fðr; tÞ follows from
Eq. (38) and the supposition that the resulting membrane stresses should be independent of the up or down
position of the plate. Substituting Eqs. (38) and (39) into the governing Eq. (32), one finds,

F ;rr þ
1

r
F ;r �

F

r2
¼ �

hA

2r
ðG;rÞ

2. (40)

Since expressions (37)–(39) cannot satisfy Eq. (33) for all t, the following integral is employed to obtain a
governing equation which closely approximate Eq. (33) within the limits of the assumed form of motion and
loading as given in Eqs. (37)–(39), respectively,

I ¼

Z 1

R

I1dwð2prdrÞ, (41)
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I1 ¼ �
h3B2

Að1� n2Þ
�

h3R

1� n2

� �
ðr4wÞ �

1

r
ðfw;rÞ;r þ h

rcm

nþ 1
þ 1

� �
w;tt

�
h2B

1� n2
r

hA
ðf;rrrrÞ þ

5� n
hA
ðf;rrrÞ þ

3� 2n
rhA

ðf;rrÞ þ
n

r2hA
ðf;rÞ �

n
r3hA
ðfÞ

� �

�
h2B

1� n2
ðw;rÞðw;rrrÞ þ ðw;rrÞ

2
þ

2� n
r
ðw;rÞðw;rrÞ

� �
� qðr; tÞ. ð42Þ

For any instant of dimensionless time t, the relation (41) is equal to the virtual work of all the transverse
forces as they move through a virtual displacement dwðr; tÞ. Equating the average virtual work over one period
oscillation to zero,

IA ¼

Z 2p=O

0

I dt ¼ 0 (43)

yields

�
h3B2

Að1� n2Þ
�

h3R

1� n2

� �
ðr4GÞ �

3

4r
ðFG;rÞ;r � h

rcm

nþ 1
þ 1

� �
O2G �

h2B

1� n2
ðG;rrÞ

2
¼ Q. (44)

Thus, the assumed harmonic vibrations become governed by the pair of nonlinear, ordinary differential
Eqs. (40) and (44). These equations along with a set of boundary conditions compose a nonlinear two-point
boundary value problem which describes the harmonic response of a circular plate undergoing finite amplitude
oscillations. Solving this nonlinear boundary-value problem completes the analysis and reveals the salient
characteristics of the plate under investigation. A singularity will exist in numerical computation when r tends
to zero; so to avoid singularity, we suppose a solid circular plate of non-dimensional radiusc at the center of
the plate. Because of continuity conditions at the center of the circular plate, it is concluded that G is finite,
thus the non-dimensional boundary conditions have the following forms at r ¼ c:

G;r ¼ 0; G;rrr ¼ �
1

c
ðG;rrÞ �

1� n2

h3R

� �
Qc

2

� �
; F ;r ¼

n
c

F . (45)

Moreover the circular plate edge is clamped at r ¼ 1, so the boundary conditions can be expressed as

G ¼ 0; G;r ¼ 0; F ;r ¼ nF . (46)

3.2. Shooting method

When ordinary differential equations are required to satisfy boundary conditions at more than one value of
the independent variable, the resulting problem is called a two-point boundary value problem. It is difficult to
obtain analytical solutions of the nonlinear boundary-value problem of Eqs. (40) and (44); so to get a
numerical solution of the problem, a shooting method or trial and error method [29,30] is employed.
Differential equations of order higher than first can be written as coupled set of first-order, nonlinear ordinary
differential equations as follows:

dY

dr
¼ Hðr;Y;QÞ; ðcoro1Þ, (47)

B1YðcÞ ¼ GðcÞ 0 � 1�n2

h3R

	 

Q
2

� �
c 0

� �T

; B2Yð1Þ ¼ f 0 0 0 gT (48a, b)

with

Y ¼ fy1; y2; y3; y4; y5; y6; y7g
T ¼ fG;G;r;G;rr;G;rrr;F ;F ;r;O2gT, (49)

H ¼ fG;r;G;rr;G;rrr;G;rrrr;F ;r;F ;rr; 0g
T ¼ fy2; y3; y4; y4;r; y6; y6;r; 0g

T, (50)
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y4;r ¼ �
2

r
y4 þ

1

r2
y3 �

1

r3
y2 �

Að1� n2Þ

h3B2 � Ah3R

� �

�
3

4r
ðy2y6 þ y3y5Þ þ h

rcm

nþ 1
þ 1

� �
O2y1 þ

h3B

1� n2

� �
y2
3 þQ

� �
, ð51Þ

y6;r ¼ �
1

r
y6 þ

1

r2
y5 �

hA

2r

� �
y2
2, (52)

B1 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1=c 1 0 0 0

0 0 0 0 �n=c 1 0

2
66664

3
77775; B2 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 �n 1 0

2
64

3
75. (53)

By considering the initial-value problem corresponding to the boundary-value problem (47) and (48)

dZ

dr
¼ Hðr;Z;QÞ; r4c, (54)

ZðcÞ ¼ IðGðcÞ;UÞ ¼ GðcÞ 0 u1 �
1� n2

h3R

� �
Q

2

� �
c�

u1

c
u2

nu2

c
u3

( )T

(55)

with

Z ¼ fz1; z2; z3; z4; z5; z6; z7g
T; U ¼ fu1; u2; u3g

T, (56)

where U is an unknown vector, relates to the missing initial values of Y at x ¼ c. A solution of initial value
problem (54) and (55) can be expressed as

Zðr;GðcÞ;U;QÞ ¼ IðGðcÞ;UÞ þ

Z r

c

Hðz;Z;QÞdz. (57)

For a prescribed value of G(c), the components of U are searched for such that solution (57), also satisfies
boundary condition (48b), i.e.

B2Zð1;GðcÞ;U
�;QÞ ¼ f0 0 0gT. (58)

If U ¼ U� is a root of Eq. (58), the solution for the boundary-value problem (47) and (48) is then obtained
as

YðrÞ ¼ Zðr;GðcÞ;U�;QÞ. (59)

By employing a fourth-order Runge–Kutta method with variable steps to integrate Eq. (57) and at the same
time, by using the Newton–Raphson method to find the root U�of algebraic Eq. (58), numerical solutions of
Eqs. (47) and (48) have been obtained. If one obtains the solutions of Eqs. (47) and (48) for a sufficiently small
value of dimensionless deflection parameter, then the solutions of Eqs. (40), (44)–(46) can be obtained for large
scale of dimensionless deflection parameter by using the method of analytical continuation [1]. Therefore, a
harmonic response of Eqs. (40), (44)–(46) is obtained in the form of Eqs. (38) and (39). Throughout the
following numerical computation at uniform ambient temperature (T ¼ 300K), let h=a ¼ 0:04, and n ¼ 0:28.
A relative error limit, �1 ¼ 10�6 was taken to warrant that both the numerical integration and the successive
correction were carried out until the error norm became less than e1. When non-dimensional radius c tends to
be zero, a singularity will exist in numerical computation; so we set c ¼ 0.0001 approximately to take the place
of the solid circular plate.
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Table 2

Frequency ratio ob1�NL=ob1�L for various non-dimensional vibration amplitudes associated with the first mode shape of clamped circular

metallic plate for a Poisson’s ratio n ¼ 0:3

w0=h Present [3] [33] [34] [35] [2] [36]

0.2 1.0075 1.0072 1.0070 1.0079 1.0070 1.0075 1.0066

0.4 1.0296 1.0284 1.0278 1.0313 1.0278 1.0296 1.0263

0.5 1.0459 1.0439 1.0431 1.0485 1.0431 1.0459 1.0408

0.6 1.0654 1.0623 1.0614 1.0690 1.0614 1.0654 1.0583

0.8 1.1135 1.1073 1.1065 1.1194 1.1065 1.1135 1.1015

1.0 1.1724 1.1615 1.1617 1.1808 1.1617 1.1724 1.1547

1.5 1.3567 1.3255 1.3343 1.3711 1.3343 1.3568 1.3229

2.0 1.5789 1.5147 1.5423 1.5982 1.5424 1.5790 1.5275

Table 3

Computed values of the normalized linear and nonlinear fundamental mode shape (GðrÞ=GðcÞ)

r* Initial-value method

o ¼ 10:216 (linear) o ¼ 16:125 (nonlinear)

[1] Present [1] Present

0.0 1.0000 1.0000 1.0000 1.0000

0.1 0.9773 0.9773 0.9820 0.9821

0.2 0.9122 0.9122 0.9289 0.9308

0.3 0.8073 0.8073 0.8426 0.8465

0.4 0.6746 0.6746 0.7272 0.7310

0.5 0.5246 0.5246 0.5887 0.5923

0.6 0.3708 0.3708 0.4364 0.4393

0.7 0.2275 0.2275 0.2826 0.2848

0.8 0.1091 0.1091 0.1438 0.1451

0.9 0.0291 0.0291 0.0410 0.0416

1.0 0.0000 0.0000 0.0000 0.0000
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Fig. 3. Normalized nonlinear fundamental mode shape GðrÞ=GðcÞ of a clamped immovable circular metallic plate for various non-

dimensional central amplitudes of axisymmetric vibration.
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3.3. Verification of solution approach

In order to show the reliability of the numerical technique employed here, we firstly give some numerical
tests. The present results are validated by considering the linear and nonlinear steady-state free and forced
vibration of a clamped circular metallic (nb100) plate.

Non-dimensional linear natural frequencies of clamped circular plates are given by [1,16,31,32]

obi ¼ a2Oi=h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12rmð1� n2Þ=Em

q
. (60)

For linear axisymmetric vibration (the case of zero nodal diameters) of a clamped circular isotropic plate,
the first four non-dimensional linear natural frequencies are [31]

ob1 ¼ 10:216; ob2 ¼ 39:771; ob3 ¼ 89:104; ob4 ¼ 158:181. (61)
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[1], Q=0

[1], -Q

[1], +Q

Mode 1

ν=0.3

w
0
 /
 h

ωb

Fig. 4. Harmonic response of the clamped circular metallic plate around the first mode for the uniformly distributed load

(Q ¼ 1.5� 10�9), values taken from Ref. [1], read from graph.

Table 4

Variation of the first two non-dimensional linear natural frequencies of axisymmetric vibration of the clamped circular functionally graded

plate for different values of n at n ¼ 0:28 and T ¼ 300K

n w0=h ¼ 0:0025 w0=h ¼ 0:00025

ob1 ob2

Ceramic 23.5873 –

0.01 23.2964 –

0.1 21.2723 82.8410

0.5 17.2985 67.0527

0.8 16.0439 62.0397

1 15.4879 59.8276

5 12.4211 48.1363

10 11.5676 45.0113

100 10.3896 40.4821

1000 10.2338 39.8233

10000 10.2176 39.7968

Metal 10.2160 39.7710
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According to the vibration mode, obi is the beginning point in the amplitude–frequency figures for linear
free vibrations.

Firstly, the present numerical method is validated by considering the linear free vibration of a circular
metallic plate with clamped immovable edge for prescribed values of a=h ¼ 136:59 and n ¼ 0:3. The maximum
non-dimensional amplitude obtained at the plate center is w0=h, and the ratio of the non-dimensional
nonlinear frequency to the corresponding non-dimensional linear frequency is ob�NL=ob�L. Table 2
summarizes a set of results which are based on various solution techniques. Effects of large vibration
amplitudes on the frequency ratio (ob1�NL=ob1�L) of the first nonlinear, axisymmetric mode shape and
hardening spring effect are shown in Table 2. It can be seen also that the present results are very close to those
of Ref. [2].

Secondly, for linear and nonlinear free vibration at the first mode, the computed values of the normalized
mode shape (GðrÞ=GðcÞ) along the dimensionless radius are presented in Table 3. Good agreements can be seen
between the results. In Fig. 3, nonlinear normalized fundamental mode shapes GðrÞ=GðcÞ of a clamped
immovable circular metallic plate for various non-dimensional amplitudes of axisymmetric vibration are
plotted. The results are in good agreement with those given in Ref. [4].
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Fig. 5. Variation of the first (a) and second (b) non-dimensional natural frequencies of the clamped circular functionally graded plate with

dimensionless central amplitudes of axisymmetric vibration.
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Thirdly, Fig. 4 focuses on the harmonic response of the clamped circular metallic plate in transverse
vibration. This figure describes the jump phenomenon and also the influence of amplitude on the non-
dimensional linear and nonlinear frequencies (ob) of metallic plate in free (Q ¼ 0) and forced ðQ ¼ 1:5� 10�9Þ
vibration around the first mode. The dimensionless, nonlinear frequencies of Ref. [1] were read from graph.
The close agreement between the results of this study and the results of Ref. [1] is observed.

Based on the numerical comparison studies, we can confirm that the present numerical study can yield
accurate solutions.

4. Numerical results and discussions

Some numerical examples are now demonstrated for the clamped circular functionally graded plate.
Variation of the first non-dimensional linear and nonlinear natural frequencies with dimensionless central
amplitudes of axisymmetric vibration for different values of n, are shown in Table 4 and Fig. 5(a), respectively.
Volume fraction of metallic phase increases by increasing n. From Eq. (60), excellent agreement can be seen
between ob1 and the first non-dimensional linear natural frequency which is obtained for nb100. It is clear
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Fig. 6. First (a) and second (b) nonlinear normalized axisymmetric mode shapes of the clamped circular functionally graded plate for

different values of n.
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from Figs. 1 and 2 and Eq. (60) that, by increasing n, dimensionless Young’s modulus decreases and
dimensionless mass density increases. Consequently, the fundamental natural frequency decreases. It is noted
that the fundamental frequency of the plate increases with the amplitude of vibration. This is due to the fact
that the in-plane forces in the plate contribute to the lateral stiffness resulting from nonlinear coupling.
A hardening type of nonlinearity is observed in this figure. This indicates that the fundamental frequency
depends upon the amplitude of vibration, which is significantly different from the linear dynamic response.
Variation of the second non-dimensional natural frequency with dimensionless central amplitude for different
values ofn is plotted in Fig. 5(b). By increasing n, the second natural frequency decreases. For nb100, linear
frequency will be approximately ob2.

The first and second nonlinear normalized axisymmetric mode shapes for various values of n at w0=h ¼ 2
are plotted in Figs. 6(a) and (b), respectively. We can see that in this case the influence of variation of n in the
nonlinear fundamental mode shape is important in the central part of the plate. Also in Fig. 6(b), it can be seen
that the results are in a good agreement near the clamped edge. However, some discrepancy is seen in the
central part of the plate. In Fig. 6(b) for the second nonlinear axisymmetric mode shape and for nb100, a
comparison is made between the results obtained here and those obtained in Ref. [4]. The results show the
good agreement. In Figs. 7(a) and (b), the nonlinear normalized mode shapes of the first two axisymmetric
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Fig. 7. Central amplitude dependent, normalized first (a) and second (b) mode shapes of the clamped circular functionally graded plate.
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modes of a clamped, immovable, circular functionally graded plate are plotted, respectively, for various values
of the non-dimensional amplitudes (w0=h) of vibration at the center. The curves show that the curvatures near
the clamped edge increase by increasing w0=h. These results may lead one to expect that the bending stress near
the edge of the plate will increase nonlinearly with the increase of the vibration amplitude. Fig. 8 indicates
variations of the ratio of nonlinear to linear frequencies of the clamped circular functionally graded plate with
dimensionless central amplitudes for the first and second axisymmetric mode shapes. In this figure, the first
nonlinear mode shape exhibits less change in frequency with the vibration amplitude than does the second
nonlinear axisymmetric mode shape, and it can be explained by the fact that the deflection shape, associated
with the first mode shape, produces less induced tensile forces than does that associated with the second mode
shape for the same maximum displacement amplitude. It can be observed that the results for nb100 agree well
with those of Ref. [4] which have been obtained for clamped immovable circular plate. Fig. 9 shows the
relation of the central amplitude of axisymmetric vibration and the first non-dimensional natural frequencies
for different values of Poisson’s ratio n at n ¼ 0:5. The first nonlinear normalized axisymmetric mode shape for
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distributed load around the first mode.
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the same conditions at w0=h ¼ 2 is shown in Fig. 10. The results indicate that, for a clamped circular plate, the
influence of Poisson’s ratio on the fundamental frequencies is negligible; so we have used the average Poisson’s
ratio (n ¼ 0:28) in this paper.

Fig. 11 illustrates free (Q ¼ 0) and forced (Q ¼ 10�5) harmonic vibration of the clamped circular
functionally graded plate around the first mode for different values of n. In right branches of the mentioned
figure, the points of vertical tangency give rise to a jump phenomenon commonly found in nonlinear vibratory
systems.

Variation of the dimensionless radial total stress with dimensionless radius on metal-rich surface and non-
dimensional radial total stress distribution along non-dimensional radius associated with the clamped
immovable circular metallic plate for the first nonlinear axisymmetric mode shape have been presented in
Ref. [37]. An excellent agreement between the results of this study and Ref. [4], for a metallic plate,
can be seen.
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5. Conclusions

The nonlinear free and forced vibration problems of a thin circular functionally graded plate have been
investigated in this paper. The von-Karman’s plate theory for large transverse deflections along with
displacement field corresponding to the classical plate theory and a semi-analytical approach has been used.
The FGM properties vary through the constant thickness of the plate. The results of this study in special cases
were compared with the response of free and forced vibration of a clamped circular metallic plate in linear and
nonlinear cases. In the results, the influences of vibration amplitude, variation of Poisson’s ratio and volume
fraction index have been examined. Several conclusions may be drawn from this study. It is considered that
variation of volume fraction index is influential in FGM properties, dynamic treatment and the amount of
stresses. The vibration frequencies are dependent on large vibration amplitudes, and for a clamped circular
plate the effect of variation of Poisson’s ratio on the fundamental frequencies is negligible.
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